
Exam Fall 2024

Contents
Exam Instructions

Task 1: Traffic Operation

Task 2: Orbital Period

Task 3: Chamber Pressure

Task 4: Reservoir Levels

Task 5: New Price

Task 6: Fruit Weights

Task 7: Weighted Average

Task 8: Pattern Count

Task 9: Simple Tracker

Task 10: Advanced Tracker

Course name: Computer programming

Course number: 02002 and 02003

Exam date: 20th of December 2024

Aids allowed: All aids, no internet

Exam duration: 4 hours

Weighting: All tasks have equal weight

Number of tasks: 10

Number of pages: 13

Exam Instructions
Prerequisites
To be able to solve the exam tasks, you need to have a computer with Python installed. All exam problems can be solved in
either IDLE or VS Code.

Exam Material
The exam material consists of a single zip file. You should unzip this file to a folder on your computer. The zip file contains the
exam text as a PDF document in English 2024_12_exam_English.pdf (this document) and the same document in Danish
2024_12_exam_Danish.pdf . The zip file also contains a folder 2024_12_exam with the following content:

An empty Python file for each task, <task_name>.py , where <task_name> is the name of the task. These are the files
where you should write your solutions and submit them at the end of the exam.

A Python file for each task, test_task_<n>_<task_name>.py , where <n> is the task number, and <task_name> is the
name of the task. These contain code that checks if your solution has the correct behavior for the example in the exam
text. To be sure that you use the tests as intended, do not edit these files.

A Python file test_tasks_all.py that runs all test files.

A folder files containing data files needed to test tasks involving files, if any.

Solving Exam Tasks
If you are using VS Code, you should start by going to File Open Folder.. and choosing the 2024_12_exam folder
inside the folder you unzipped to above.

When solving the exam tasks, follow the instructions in the exam text. You can test your solutions by running the provided
testing scripts. For the testing scripts to work, your solutions must be in the same folder as the testing scripts.

If you believe there is a mistake or ambiguity in the text, you should use the most reasonable interpretation of the text to solve
the task to the best of your ability. If we, after the exam, find inconsistencies in one or more tasks, this will be taken into
account in the assessment.

Your solutions should only use the tools that have been taught in the course. Solutions that import modules other than math ,
numpy , os , or matplotlib will not be graded. The test scripts provided do not check for this, so it is your responsibility to

ensure that your solutions only use the allowed modules.

Evaluation of the Exam
We will run a number additional tests on each of your solutions that checks if it behaves as specified in the task. The fraction of
correct tests is the score for each task. The overall score is the average of the scores.

A solution where the provided test fails is incorrect. This can be because the file or function are named incorrectly. However, if
a provided test passes, it does not guarantee that the solution is correct for our additional tests.

→

Handing in
To hand in your solutions, upload your Python files with solutions to the Digital Exam system. In the Digital Exam system, files
can be submitted as either main document or attachments. You can upload any of your solutions as the main document, and
the rest as attachments.

You should hand in exactly the following files:

chamber_pressure.py

fruit_weights.py

new_price.py

orbital_period.py

pattern_count.py

reservoir_levels.py

simple_tracker.py

traffic_operation.py

weighted_average.py

Any file handed in that is not in the list above will not be taken into account in your assessment.

Task 1: Traffic Operation
Traffic lights operate in one of the following three modes depending on the time of day:

rush hour from 7:00-8:59 and 15:00-16:59,

night from 22:00 until 5:59 the following morning,

normal all other times.

Since operation mode always changes at the beginning of an hour, it is solely a function of the current hour (a number from 0
to 23).

Write a function that takes the current hour as input. The function should return the operation mode as a string, either
'normal' , 'rush hour' , or 'night' .

For example, if the input hour is 8, it falls within the rush hour period between 7:00 and 8:59. Therefore, the function should
return 'rush hour' , as show below.

The filename and requirements are:

>>> traffic_operation(8)
'rush hour'

traffic_operation(hour)

Determines the traffic light operation mode depending on the hour of the day.
Parameters:

Returns:

traffic_operation.py

hour int The hour of the day.

str The traffic operation mode for the hour of the day.

Task 2: Orbital Period
Kepler’s third law of planetary motion says

where is the orbital period of the planet (in seconds), is the length of the semi-major axis of the orbit (in meters), is the

total mass of the system (in kilograms), and is the gravitational constant.

Write a function that takes as input two numbers: the length of the semi-major axis (in meters) and the total mass of the
system (in kilograms). The function should return the orbital period (in seconds).

As an example, consider the system consisting of the Sun and the Earth. The semi-major axis of Earth’s orbit is
meters, and the total mass of the system is kilograms. We have (not writing units, and displaying only a few decimals)

so seconds (which is about 365.7 days). This example is shown below.

The filename and requirements are:

T

2

=

4π

2

GM

a

3

T a M

G = 6.6743 ⋅ 10

−11

m

3

kg

−1

s

−2

1.5 ⋅ 10

11

2 ⋅ 10

30

T

2

=

4π

2

6.6743 ⋅ 10

−11

⋅ 2 ⋅ 10

30

(1.5 ⋅ 10

11

)

3

= 9.981 ⋅ 10

14

T =

√

9.981 ⋅ 10

14

= 3.159 ⋅ 10

7

>>> orbital_period(1.5 * 10**11, 2 * 10**30)
31593584.1373

orbital_period(a, M)

Calculate the orbital period of a planet using Kepler’s third law.
Parameters:

Returns:

orbital_period.py

a float The length of the semi-major axis of the orbit, in meters.

M float The total mass of the system, in kilograms.

float The orbital period of the planet, in seconds.

Task 3: Chamber Pressure
The pressure in a chamber increases every hour by , where is the current pressure, is the maximum
pressure, and is a constant. We are interested in the time it takes for the pressure to reach or exceed a critical pressure

.

Write a function that takes as input the initial pressure, the maximum pressure, the critical pressure, and the constant . The
function should return the number of hours it takes for the pressure to reach or exceed the critical pressure.

For instance, suppose the initial pressure is , the maximum pressure is , the critical pressure is
, and the constant is . After one hour, the pressure increases by , bringing it to .

In the second hour, it increases by , resulting in a pressure of . Repeating this process, the pressure
reaches after 18 hours, still below the critical value. After 19 hours, the pressure is , exceeding the critical
value. This is shown in the code below.

The filename and requirements are:

k(P

max

− P) P P

max

k

P

crit

k

P = 20 P

max

= 120

P

crit

= 105 k = 0.1 0.1(120 − 20) = 10 30

0.1(120 − 30) = 9 39

104.99 106.49

>>> chamber_pressure(20, 120, 105, 0.1)
19

chamber_pressure(P0, Pmax, Pcrit, k)

Computes the number of hours it takes for the pressure to reach or exceed the critical value.
Parameters:

Returns:

chamber_pressure.py

P0 float The initial pressure.

Pmax float The maximum pressure.

Pcrit float The critical pressure.

k float The constant.

int The number of hours it takes for the pressure to reach or exceed the critical value.

Task 4: Reservoir Levels
Water levels in a reservoir are recorded every hour. If the water level drops by more than 150 cm in an hour, it must be
reported.

Write a function that takes a list of water levels as input and returns a list of indices where the water level drops strictly more
than 150 cm compared to the previous level.

For example, consider the water levels [1320, 1307, 1295, 1102, 1360, 1395, 1101, 1208] . The level at index 0 has no
previous level for comparison. The next two levels have drops of and cm. The level at index 3 is
cm lower than the previous level, so this is the first index to be reported. The next two levels are higher that the previous
levels. The level with the index 6 drops by cm compared to the previous level, so it is reported. The last level is higher
than the previous one. The function should return [3, 6] , as shown below.

The filename and requirements are:

13 12 1295 − 1102 = 193

294

>>> reservoir_levels([1320, 1307, 1295, 1102, 1360, 1395, 1101, 1208])
[3, 6]

reservoir_levels(levels)

Detects indices for water levels that are more than 150 lower than the previous measurement.
Parameters:

Returns:

reservoir_levels.py

levels list The list of water level measurements.

list The indices for water levels that are more than 150 lower than the previous measurement.

Task 5: New Price
When a product goes on sale, its price is reduced by a specified percentage. The discounted price must be displayed in a
standardized format.

For example, if the original price is 143.50 DKK and the discount is 40%, the new price is calculated as

To standardize the display, we round the new price to exactly two decimal places, add a single space, and add the currency
code DKK. The price string becomes '86.10 DKK' .

Write a function that takes as input the original price and the discount percentage. The function should return a tuple
containing the new price and the formatted price string, as show in the code below.

The filename and requirements are:

143.5 − 143.5

40

100

= 86.1 .

>>> new_price(143.50, 40)
(86.1, '86.10 DKK')

new_price(price, discount)

Computes the new price and formats the price string.
Parameters:

Returns:

new_price.py

price float The original price.

discount int The discount percentage.

tuple The new price and the price string.

Task 6: Fruit Weights
You have a table of fruit weights (in grams) for various fruits, but the fruit names are inconsistently formatted, appearing in
lowercase (apple), uppercase (APPLE), or capitalized (Apple). You want to standardize the table to only contain lowercase
names. If multiple records exist for the same fruit, the weights should be averaged and rounded down.

Write a function that takes a table as input and returns a standardized table. Both tables are dictionaries. For example,
consider the table below.

In this table, apple appears in three forms with the weights 182, 185, and 175 grams. In the standardized table, the name
should be 'apple' with the weight being the average (182+185+175)/3 rounded down to 180. Banana appears in two forms
with the weights 110 and 115 grams. So, the standardized table should have 'banana' with weight (110+115)/2 rounded
down to 112. Orange and lime each appear once, so the weights remain unchanged, but the names should be converted to
lowercase.

You can see the expected output in the example.

The filename and requirements are:

>>> table = {'apple': 182,
... 'banana': 110,
... 'Orange': 160,
... 'Banana': 115,
... 'APPLE': 185,
... 'Apple': 175,
... 'lime': 67}

>>> fruit_weights(table)
{'apple': 180, 'banana': 112, 'orange': 160, 'lime': 67}

fruit_weights(table)

Standardizes table for fruit weights.
Parameters:

Returns:

fruit_weights.py

table dict A dictionary of fruit names and weights.

dict A dictionary of fruit names and standardized weights.

Task 7: Weighted Average
Given values , you want to calculate their weighted average. The weights are determined from the values
as

where is the mean of the values and is the standard deviation. The mean and standard deviation can be calculated as

The weighted average is then computed as

For example, consider the values . The mean and standard deviation are and

, respectively. The weight for the first element is , and all weights are
. Finally, the weighted average is

In a special case where , for example if all values are the same, the weighted average is equal to the mean of the
values.

Write a function that takes an NumPy array of values as input and returns the weighted average. You can see the expected
output in the example.

The filename and requirements are:

N x

0

,x

1

,… ,x

N−1

w

i

= e

−(x

i

−μ)

2

2σ

2

μ σ

μ =

1

N

N−1

∑

i=0

x

i

and σ =

1

N

N−1

∑

i=0

(x

i

− μ)

2

.




⎷

a =

∑

N−1

i=0

w

i

x

i

∑

N−1

i=0

w

i

.

[4.8 , 6.6 , 12.2 , 7.3 , 6.5] μ = 7.48

σ = 2.499 e

−(4.8−7.48)

2

2⋅2.499

2

= 0.563

[0.563 , 0.94 , 0.168 , 0.997 , 0.926]

a =

0.563 ⋅ 4.8 +…

0.563 +…

=

24.254

3.594

= 6.749 .

σ = 0 x

i

>>> import numpy as np
>>> weighted_average(np.array([4.8, 6.6, 12.2, 7.3, 6.5]))
np.float64(6.748513328262833)

weighted_average(x)

Computes the weighted average of the array.
Parameters:

Returns:

weighted_average.py

x numpy.ndarray An array of numbers.

float The weighted average of the array.

Task 8: Pattern Count
A strand of DNA is represented as a text containing the letters A , C , G , and T , and is stored in a file. The goal is to count
how many times a given pattern appears in the DNA strand. There might be line breaks in the file, but they carry no meaning
and should be ignored. All occurrences of the pattern should be counted, even if they overlap. For example, the pattern ACA
appears twice in the DNA strand ACACA .

Write a function that takes a file name and a pattern as input and returns the number of times the pattern occurs in the DNA
strand.

For example, consider a file files/dna_data_1.txt with the content:

and a pattern 'ACCG' . This pattern appears twice in the DNA strand: once with the A at the end of the fourth line which
continues onto the fifth line, and a second time with the A located 10 characters before the end of the sixth line.

The expected output may be seen in the example.

The filename and requirements are:

CGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCG
AAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGG
TTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGT
GAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGAGCTCCA
CCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGG
GCTGCAGGAATTCGATATCAAGCTTATCGATACCGTCGACC
TCGAGGGGGGGCCCGGTACCCAGCTTTTGTTCCCTTTAGTGAG
GGTTAATTGCGCGCTTG

>>> filename = 'files/dna_data_1.txt'
>>> pattern_count(filename, 'ACCG')
2

pattern_count(filename, pattern)

Finds the number of occurrences of the pattern in the DNA strand.
Parameters:

Returns:

pattern_count.py

filename str The name of the file with the DNA strand.

pattern str The pattern to search for.

int The number of occurrences of the pattern in the DNA strand.

Task 9: Simple Tracker
We want to create a tracker that can keep track of multiple numbers, but only those that are positive and that do not exceed a
specified limit. The tracker should start empty and numbers are added to the tracker one-by-one if they fulfil the requirements.
The tracker should be able to compute simple statistics of the added numbers. It should be possible to reset the tracker.

Write a class definition for the class SimpleTracker . The constructor should take a positive integer, the limit. The tracker
should be empty initially. The add method should take a number as input, and add it to the added numbers if it is positive and
not larger than the limit. The add method should return True if the number was added, and False if it was not. The reset
method should clear the added numbers. The stats method should return a tuple with two elements: the total and the span.
Here, the total is the sum of all added numbers, and the span is the difference between the largest and the smallest added
number. If the tracker is empty, both the total and the span should be 0.

Consider the example below.

In this example, a tracker is created with a limit of 500. When attempting to add the number 510, False is returned because
the number exceeds the limit and cannot be added to the tracker. Next, the numbers 200 and 352 are successfully added. At
this point the total and the span are 200 + 352 = 552 and 352-200 = 152. Then, the tracker is reset and both the total and the
span are 0.

The filename and requirements are:

>>> tracker = SimpleTracker(500)
>>> tracker.add(510)
False
>>> tracker.add(200)
True
>>> tracker.add(352)
True
>>> tracker.stats()
(552, 152)
>>> tracker.reset()
>>> tracker.stats()
(0, 0)

SimpleTracker()

A class that tracks valid numbers.
__init__(limit)

Initialize a tracker with a limit.
Parameters:

add(number)

Add a valid number to the tracked numbers.
Parameters:

Returns:

reset()

Reset tracker.
stats()

Return the total and the span.
Returns:

simple_tracker.py

limit int The limit that valid numbers cannot exceed.

number int The number to be added.

bool True if the number is added, False otherwise.

tuple The total and the span of the tracked numbers.

Task 10: Advanced Tracker
We want to create a subclass of the SimpleTracker class from Task 9 that performs an additional check before adding a
number to tracker.

When attempting to add a new number, if the tracker is not empty, the new number should be added only if it differs from the
previous by no more than a specific value, max delta. If the absolute difference exceeds max delta, the number should not be
added. In addition, the number should still be checked for validity as in the parent class, and the add method should return
True if the number was added, and False if it was not.

Write the class definition for the subclass AdvancedTracker , which inherits from SimpleTracker . The constructor should
take both limit and max delta as input parameters. Modify the necessary methods to incorporate this additional behavior, and
inherit the unchanged methods from the parent class.

You should write the class definition for AdvancedTracker in the same file as the class definition for SimpleTracker .

Refer to the example below for expected behavior.

In this example, the tracker is initialized with a limit of 500 and a max delta of 100. The number 200 is added successfully. The
number 325 is not added because the absolute difference between its value and the previous
352-200=152 is larger than the max delta, which is 100. The number 252 is added successfully because the absolute
difference between its value and the previous is 52. At this point, the total is 252+200=452 and the span is
252-200=52. When attempting to add 510, it is not added because it exceeds the limit of 500.

The filename and requirements are:

>>> tracker = AdvancedTracker(500, 100)
>>> tracker.add(200)
True
>>> tracker.add(352)
False
>>> tracker.add(252)
True
>>> tracker.stats()
(452, 52)
>>> tracker.add(510)
False

AdvancedTracker()

A class that tracks of non-extreme valid numbers.
__init__(limit, max_delta)

Initialize a record with a limit and a maximum delta.
Parameters:

add(number)

Add a valid and non-extreme number to the tracked numbers.
Parameters:

Returns:

simple_tracker.py

limit int The limit that valid numbers cannot exceed.

max_delta int The maximum delta value for determining non-extreme numbers.

number int The number to be added.

bool True if the number is added, False otherwise.

